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1. INTRODUCTION

The set of retinal receptors that responds to a given object in the visual field
varies directly with the size, orientation and position of the object. The fact that
this object can be recognized as the same object in spite of these variations
implies that, at some point, the brain reduces this variable retinal input into a
single pattern of neural activity that defines the object. Various approaches to the
extraction of an invariant encoding have been discussed since Helmholtz first
presented the problem (Cutting, 1983; Dodwell, 1982; Foster, 1977; Hu, 1962—
to name a few of the articles on the subject), and most current models can be
characterized as one of two types: an abstract, structural representation of the
object or a transformation of the form into an analogue representation that is
itself invariant to input size, position, and orientation. Although both approaches
are often seen as competing models, I will argue that they are actually similar in
several respects and may both be at work in the visual system.

A structural representation reduces the form to be identified to a set of primi-
tive elements and the structural relations between them (Fig. 6.1). In the case
where the primitives are, for example, lines (contours) and angles, the first stage
requires the extraction of edge information and the second a determination of the
relations between the edges.

Size and position are not essential attributes of the primitive elements of this
type of encoding as only the presence or absence of the elements and the relations
among them need be specified. As a result, the encoding is by nature invariant to
the size and position of the overall pattern. The computer vision literature offers
several examples of different possible primitives (e.g., lakes and bays—Fig. 6.2,
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FIG. 6.1. A structural representation of the letter E. Lines, their orientations,
and their positions with respect to each other form the basic encoded information.
The representation is not size specific but is orientation dependent in the relations
“left-of’* and **vertical.’” These relations can be reformulated to provide orienta-
tion invariance. The tolerance of the representation to variations in the letter E
depends on the lowest level of encoding: what is accepted as a line, as parallel and
adjacent, as perpendicular, etc.

Duda & Hart, 1973) and notational schemes (networks, Oden, 1979; pattern
grammars, You & Fu, 1979; trees, Cunningham, 1980; graphs, Shapiro, 1980;
etc.). Since these representations as a whole encode the structure of the object,
they are insensitive not only to size and position changes but also to large
variations in style. For example, the many styles of printing a letter all, in
general, retain the same basic structure but vary along several dimensions such as
angle, size, aspect ratio and line thickness (Fig. 6.3). Thus, there are compelling
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FIG. 6.2. Lakes and bays. A to-
pological decomposition of letter
shapes is produced by collapsing a
rubber band around the outer perime-
ter of the letter, forming its convex

hull. A *‘lake’’ is an open area en- BAY
tirely enclosed by the figure and a
*‘bay’’ is an area bounded by the fig-
ure and by the convex hull. (a) Letter
R. (b) Convex hull, bays and lakes. \ -’

This representation is size invariant. b

theoretical and practical reasons for proposing that the brain may use structural
representations for encoding and recognizing visual patterns. The possible mech-
anisms by which the brain might implement these structural encoding procedures
have only been partially sketched out in the literature however. The initial stage
of primitive extraction—in the case of edge descriptions—can be related in a
straightforward fashion to the action of the oriented line detectors in the striate
cortex (Hubel & Wiesel, 1962, 1968; see Barlow, Narasimhan, & Rosenfeld,
1972; Marr, 1982). On the other hand, the analysis of the structural relations
between the elements and the encoding of the overall representation finds little in
the way of candidate neural mechanisms in the current literature (although see
the chapters in this book by Caelli, Grossberg and Hoffman).

The alternate approach to pattern encoding involves transformations of the
stimulus patterns into representations that do not vary with the size and position
of the input. The fibre bundle that connects the retinal array, through the lateral
geniculate body to the striate cortex performs a particular, at present only par-
tially understood, transformation of the input pattern. The connections from the
striate array to the prestriate surfaces and from there to the inferotemporal cor-
tices perform additional unknown remappings of the visual representation. The
nature of the repeated remapping of the information of the visual cortices appears
to be well suited to the possibility of transforming visual patterns into domains
where recognition and classification are more easily accomplished.
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FIG. 6.3. Variations on the letter E. Most of these examples can be identified in
isolation by human observers. A simple encoding of lines and angles would,
however, be highly misleading in several of these examples due to the addition of
depth information and extraneous, stylistic contours. Some preprocessing such as
blurring might be useful in order to ignore irrelevant details.

There have been several proposals for particular transformations occurring in
the visual system: compensatory (Foster & Mason, 1979; Marko, 1973), Fourier
(Campbell & Robson, 1968; Pollen, Lee, & Taylor, 1971), densely connected
(Kabrisky, Hall, Goble, & Gill, 1971), autocorrelation (Uttal, 1975), log polar
(Chaikin & Weiman, 1979; Schwartz, 1977, 1980), log polar frequency (Cav-
anagh, 1978a), contour spectrum (Desimone, Schwartz, Albright, & Gross,
1982), and composite pseudo Wigner (Jacobson & Wechsler, 1982), among
others.

The proposal of Fourier analysis in the visual system followed the work of
Schade (1956) who applied Fourier analysis to the transmission quality of the
visual system and Campbell and Robson (1968) who proposed that the visual
system itself performed a Fourier analysis on the stimulus pattern. The hypoth-
esis of a global Fourier transform at the level of the striate cortex is quickly ruled
out, however, as the receptive fields are restricted to small local areas and do not
cover the entire visual field as would be required. Various piecewise Fourier
analyses have been proposed (Glezer & Cooperman, 1977; Pollen, Lee, & Tay-
lor, 1971; Robson, 1975) but even if the Fourier transform were realized at the
striate level this transform obtains neither size nor rotation invariances (Casasent
& Psaltis, 1976) and so would be of little use on its own.

Schwartz (1977) has proposed that the log polar organization of the reti-
notopic mapping on the striate cortex can support size invariance. However, this
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mapping because of its dependence on position is of marginal value in pattern
analysis (Cavanagh, 1981, 1982).

If, rather than looking at the overall organization of the striate cortex, we look
at the local structure, a very striking and potentially useful organization is re-
vealed—that of a log polar frequency transform (Berardi, Bisti, Cattaneo,
Fiorentini, & Maffei, 1982; Cavanagh, 1978a; Maffei & Fiorentini, 1977). The
goal of this chapter is to show how this organization might contribute to the
pattern analysis process. The next section demonstrates the useful properties of a
log polar frequency transform and the subsequent section outlines the physiology
that may underly this process.

A brief note concerning the use of the terms ‘‘spatial frequency’” and *‘spatial
frequency detector’” should be added here. The receptive fields of striate cells
cover only local areas and so do not encode true Fourier spatial frequency
components. They are, however, more selective to spatial frequency content than
to other more naturalistic characteristics such as bar width (Albrecht, De Valois,
& Thorell, 1980). For simplicity, the term ‘‘spatial frequency detector’’, as
opposed to bar width detector or size detector or orientation detector, is used
throughout to describe the encoding operation of simple and complex cells. This
can be viewed as a convenient label for a process that in fact only approximates
spatial frequency analysis.

2. LOG POLAR FREQUENCY TRANSFORM

This section demonstrates the size invariance properties of a transform sequence
based on the Fourier amplitude representation. It should be stressed that this
sequence has drawbacks both in terms of its pattern recognition capabilities and
its physiological realizability. These drawbacks are outlined and it will be seen
that in modifying the sequence to be more physiologically appropriate, the pat-
tern recognition capabilities are simultaneously improved.

A log polar frequency transform (Brousil & Smith, 1967; Casasent & Psaltis,
1976; Cavanagh, 1974, 1978a) arrays the spatial frequency components of the
input pattern along orthogonal axes of orientation and the logarithm of the spatial
frequency (in Fig. 6.4, the letter F is shown at various sizes and orientations, a G
and an E are included for comparison). To generate the demonstration, the
frequency components used are the Fourier amplitude coefficients of the input
(Goodman, 1968) but are arrayed on orientation and log spatial frequency axes
rather than Cartesian frequency axes (x and y). The transform has three important
properties.

Position Invariance. Because the information is in terms of spatial frequen-
cies, the values can be represented as the amplitude and the phase of the sinusoi-
dal components present in the input. The amplitude reflects the strength of a
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FIG. 6.4. A size and position invariant encoding sequence. The letter F is pre-
sented in three different sizes (7.5, 15, and 30 minutes of visual angle) and at a
nonupright orientation (315 degrees, size—15 minutes of visual angle). Opposite,
a G and an E are also presented for comparison. Each input is shown at three
stages of transformation: a Fourier amplitude transform, a log polar mapping of
the Fourier amplitude transform and a Fourier amplitude transform of the log polar

component and the phase its position. The key attribute of this encoding is the
position invariance that is obtained when amplitudes are considered: The ampli-
tude values are the same no matter where in the input field the pattern lies.
The basic patterns encoded by the Fourier transform, the primitive features,
are sinusoidal grids extending over the entire input field and these features are
size and orientation specific. As a result, the transform will be affected by scale
and orientation changes. Other basis features that might be considered as alterna-
tives to the sinusoidal grids—oriented bar detectors (Hubel & Wiesel, 1962,
1968), Gabor signals (Kulikowski, Marcelja, & Bishop, 1982; Marcelja,
1980)—are also specific to size and orientation. The set of encoded features
would therefore change with size and orientation for these functions as well.
Although these representations would be affected by size and orientation
factors, it is possible to arrange the dimensions of the encoding so that size and
orientation invariances can be obtained. For the log spatial frequency and orien-
tation dimensions described here, the overall pattern of the encoded features
remains the same and its position in the transform space simply shifts as a
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mapping. The images are presented on matrices of 64 X 64 resolution with
amplitude being represented in 30 equal intervals between the minimum and
maximum of each image by the density of dots. The final Fourier amplitude
transform is performed on the log polar representation after it is reduced to 32 X
32 resolution and zero mean amplitude with the rest of the 64 X 64 array set to
zero. This minimizes aliasing and aperature effects (Goodman, 1968).

function of the size and orientation of the stimulus. Note that it is the arrange-
ment of the axes that provides the essential size and orientation invariances. The
critical requirement of the basic features themselves, whether bar width, Gabor
signals, sinusoidal grids or other, is the capacity to provide a position invariant
encoding—as does the amplitude value of the spatial frequency representation.

Orientation Axis. Since one axis of the two dimensional transform space
(see Fig. 6.4, third column) is orientation, a change in the orientation of the input
shape changes all the orientations of the component features by the same amount
and the whole pattern simply shifts along the orientation axis. Notice in Fig. 6.4
that the rotation of the input letter has only shifted the feature pattern (Fig. 6.4,
third column, F at 45 degrees versus upright F of same size). The pattern as a
whole is unchanged with the exception that the part shifted off the right border
reappears on the left border and vice versa.

Log Size Axis. When the input shape changes size by a factor x, all the
component features are scaled by the same factor. If a stimulus were halved in
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size, a feature that had a size 10 (in arbitrary units) would become a size 5, a size
5 would become a 2.5 and so on. (Since a smaller feature has a higher spatial
frequency content, the changes in terms of spatial frequencies would be in the
opposite direction, 10 cycles per degree becoming 20 cycles per degree, etc.) In
order for these features to shift by a constant amount along the size axis, the axis
must have a logarithmic scale. A constant multiplicative factor then becomes a
constant linear shift. This constant linear shift of all components ensures that the
overall pattern of the transform is retained (Fig. 6.4, third column for the three Fs
of different sizes) and only shifted as a whole (with the exception of information
being lost or being added at the transform borders for a size axis of finite length).

These three aspects combine to provide an encoding that is invariant to posi-
tion of the input pattern and that shifts for changes in size and orientation. This
encoding represents an explicit mechanism embodying the suggestions by Milner
(1974) concerning angle and length-ratio feature detectors and those by Blake-
more and Campbell (1969) concerning spatial frequency ratios.

In order to obtain an encoding that is strictly form specific, a final stage of
processing must be assumed that can extract the constant pattern at the log polar
level, independently of its position. A Fourier amplitude transform of the log
polar representation is used to demonstrate this (Fig. 6.4, fourth column) al-
though other transforms or feature maps with position invariance would certainly
be sufficient. At this final level, the similarities of the different size, position and
orientations of the input are captured by a fixed pattern. (Size, orientation and
position information are no longer represented at this level and must be processed
by other means.) Such fixed patterns could then be used for identifying future
instances of the same pattern at new locations, sizes and orientations. Such
encoding schemes make the use of correlational (Anderson, Silverstein, Ritz, &
Jones, 1977; Kohonen, 1977) and holographic filter (Cavanagh, 1975, 1976)
memories a practical suggestion for the visual system. Table 6.1 shows the
correlations of the final transforms of the variously sized and oriented letters F
against the transforms for the letters F, E, and G (point by point Pearson correla-
tions of two 64 X 64 value matrices at a time). The input is correctly recognized

TABLE 6.1.
Correlations between the final transform representations of the E, G
and F at 15 minutes of visual angle and the final transforms of the
variously sized and oriented Fs.

F F F F

.89 1.00 .94 .99
.86 .83 .87 .86
.88 .93 91 93
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(has the highest correlation) as an F for all input conditions. Note, however, that
the discrimination between the E and the F is only moderate. Even though these
are two highly confusable letters, the small degree of discriminability is a reflec-
tion of the incomplete nature of pattern information in the Fourier amplitude
domain. It is shown in a subsequent section that when additional relative phase
information is combined with the amplitude representation discrimination is
dramatically improved.

For simplicity in generating this demonstration, the Fourier amplitude compo-
nents were assumed as the basis of the initial encoding. Although sufficient for
these demonstrations, there are three specific problems with the Fourier ampli-
tude transform as a model of visual encoding.

1. It is clear that the cells of the striate cortex do not act as spatial frequency
detectors. The principal difference is that the receptive fields of these cells are
responsive over only local areas rather than over the entire visual field. If a cell
were to be a true spatial frequency ‘‘detector’’ it would have to have a receptive
field that covered the entire visual field and whose sensitivity varied sinusoidally
along one direction and not at all along the orthogonal direction. The local nature
of the striate receptive fields is in direct contradiction to this requirement. A few
authors have suggested (Kulikowski et al., 1982; Marcelja, 1980; Pollen,
Nagler, Daugman, Kronauer, & Cavanagh, 1983) that the receptive fields that
are seen are actually small patches of a sinusoidal grid—Gabor profiles. This
shape has the advantage of providing both spatial (location) and frequency (size)
information in an optimal way. No effort has yet been made to show how this
optimal encoding might fit into an overall form-encoding process, however,
although local analysis of texture (Robson, 1980) is one possibility. Whatever
the specific characterization of the receptive field, its local nature renders the
general position invariance that is a prerequisite to size invariance unavailable at
the striate level.

2. The spatial frequency amplitude transform is not only physiologically
unrealistic but is also a rather poor choice for a pattern recognition process. In
particular, it is insensitive to the position of the sinusoidal components and so is
essentially a feature list with no indication of the interfeature relations. An
infinity of patterns can be made from the same set of sine waves just by varying
their relative positions and these variants are not reflected in the amplitude
transforms. Two particular variants underline this deficiency: 180 degree rota-
tions and negative images are indistinguishable on the basis of the amplitude
transforms.

3. Nonlinearity. For a linear system, the sum of the responses to several
stimuli is equal to the response to the sum of the stimuli. This principle holds true
for the Fourier transform itself (with real and imaginary components, the Fourier
transform of the sum of two patterns is the sum of their individual transforms) but
not for the AMPLITUDE component in isolation. Because position is not repre-
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sented by the amplitude components, the sum of the amplitude transforms of two
patterns will not reflect the position-dependent interactions between their shared
frequency components. This is an unavoidable characteristic of any position
invariant transform. If the encoding is invariant to the pattern’s position, the sum
of two transforms cannot reflect interpattern relations. The encoding of the sum
of the two patterns will, however, be affected by interpattern spacing.

This nonlinearity interferes significantly with the ability to recognize a given
stimulus encoded in the presence of others. Using the full, linear Fourier trans-
form, it is possible to identify a letter A in a field of other letters no matter where
the letter is, how many other letters there are, and whether or not it overlaps with
other letters (Vander Lugt, 1964). The nonlinearity of the Fourier amplitude
transform makes this task increasingly difficult as the number of nontarget letters
increases. Moreover, since the amplitude transform is position invariant over the
entire input field, the interference created by distractor letters is just as severe for
letters at opposite sides of the input field as for overlapping letters. The visual
system itself has difficulty in identifying overlapping figures, but the interference
decreases with increasing separation between a target and a distractor. Thus,
although the visual system may also suffer some nonlinear interference due to
position independent encoding, it would appear to be less severe and probably
limited to cases of overlap (as in hidden figures and masking paradigms) and
adjacency (metacontrast).

To summarize, the Fourier amplitude transform is not an appropriate choice
for pattern recognition and is not a realistic representation of the encoding in the
visual system, certainly not that of the striate cortex. Evidently, to achieve a
general pattern recognition capability, the local information available at the
striate level must be integrated in some manner and the basis set must be some-
thing other than the amplitude of the sinusoidal components of the Fourier
transform. Specifically, the encoding of interfeature relationships would be
important. The following section describes in more detail the nature of the local
receptive fields, how they may be organized into local log polar frequency
transforms that avoid the problems of Fourier amplitude encoding, and how these
might further be processed to provide the necessary invariance properties.

3. PHYSIOLOGICAL CONSTRAINTS

Receptive Fields

If we consider the general classifications of the cells of the striate cortex, four
types have been reported (Hubel & Wiesel, 1962; 1968): nonoriented, simple,
complex, and hypercomplex. The nonoriented cells provide no more advanced
coding than that available at the retinal level—their role in a form encoding



6. IMAGE TRANSFORMS 195

process 1s therefore unclear. Simple and complex cells respond to oriented bars
of a particular width. These dimensions are the basis of the form encoding
process described here. The hypercomplex cells prefer oriented bars of a particu-
lar width and LENGTH. Although Julesz (1981) has proposed that these cells
could underlie his terminator textons, they play no role in the encoding discussed
here.

The receptive field sensitivity profiles of simple cells typically show two or
more adjacent, elongated subfields having antagonistic excitatory and inhibitory
influences. A bright bar aligned with the excitatory subfield or, if there is more
than one, a grating (several parallel bars spaced to fall on each excitatory region)
gives the maximum response for this cell (Albrecht, De Valois & Thorell, 1980).
The output from simple cells therefore depends directly on the position of the
stimulus, consequently, no position invariance is available at the level of the
simple cells.

Complex cells respond best to moving bars and exhibit no spatially distinct
excitatory or inhibitory regions, responding to a drifting bar uniformly over the
entire receptive field as long as it is appropriately oriented and of the preferred
width (Glezer, Tscherbach, Gauselman, & Bondarko, 1980; Heggelund, 1981:
Hubel & Wiesel, 1962, 1968).

Some authors (Hubel & Wiesel, 1962, 1968; Pollen & Ronner, 1981) have
suggested that the simple cells may be feeding into the complex cells to produce
the position independent nature of the latter’s response. That is, if a set of simple
cells tuned to the same frequency and orientation are staggered by "2 cycle or less
each (i.e., the width of the excitatory subregion) along an axis perpendicular to
the preferred orientation are fed into a complex cell, the complex cell could
respond to a bar independently of its position within the field. The bar would
always be falling on the excitatory region of at least one of the simple cells. If the
receptive field profile of the ith simple cell of the set feeding the complex cell
were given by R;(x,y) and the stimulus intensity distribution given by S(x,y) then
C, the output of the complex cell would be given by

C = >, MAX Ux fx Ri(x,y)-S(x.y)dxdy, 0] (n

Because the responses of the simple cells are rectified (represented by the MAX
function), that is, cannot become negative when the effect of the stimulus is
strongly inhibitory, the sum will be fairly independent of the stimulus position if
the receptive fields of the set are sufficiently closely spaced. According to Pollen
and Ronner (1981), simple cells that are physically adjacent respond to similar
frequencies and orientations and are offset by 90 degrees (' cycle) along a
direction perpendicular to their preferred orientation. The staggering of simplec
cells feeding a complex cell may then be in Y% cycle steps. Pollen and Ronner
(1981) have presented a possible organization for this summation that differs
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slightly from that given here but that achieves the same result. Some authors
have suggested that complex and simple cells are not hierarchically organized but
rather receive their inputs in parallel from lateral geniculate cells (Stone, Dreher
& Leventhal, 1979). Whether the organization underlying the position indepen-
dence of the complex cell is hierarchical or parallel has no direct impact on the
model being described here as either organization can produce equivalent recep-
tive field substructures and the essential property of position independence.

Movshon, Thompson and Tolhurst (1978a) have probed complex cells’ recep-
tive fields with line pairs and have shown a number of discrete but spatially
overlapping subunits that individually seem to act in a more or less linear way.
The overall response amplitude of a complex cell is, in fact, fairly linearly
related to input contrast (Tolhurst, Movshon, & Thompson, 1981).

Because the position invariance of the complex cells within their receptive
fields is an important step towards the overall position invariant features neces-
sary for the form encoding process, it is assumed that the output of the complex
cells conveys the essential pattern information being passed on to subsequent
stages and that the simple cells are not further implicated in the processes de-
scribed here although they may participate in other parallel analyses (Burr,
Morrone, & Maffei, 1981).

The cortical layers in which complex cells predominate are layers II and III
(Hubel & Wiesel, 1962). These are also the layers that, in monkey and therefore
most probably in man, project to the prestriate cortex (Lund, Lund, Hendrick-
son, Bunt, & Fuchs, 1975; Spatz, Tigges, & Tigges, 1970), while other layers
project principally to subcortical centres.

For the purposes of the processes described here the essential characteristics
of the complex cells of the striate cortex are as follows:

1. They are selective for the size and orientation of visual stimuli.

2. Their receptive fields are local. Global position invariance must be
achieved through some subsequent processing.

3. The complex cells are, within their receptive fields, invariant to the stim-
ulus position. When different components of the same stimulus stimulate two
different complex cells, for example. the relative positions of the pattern’s com-
ponents are not directly reflected in the output of those two cells. Some process
that overcomes this apparent loss of relative position information must be
identified.

Local and Global Architecture

The visual input is remapped onto the striate cortex in a retinotopic fashion
(Tootell, Silverman, Switkes, & De Valois, 1982). Schwartz (1977), among
others, has suggested that this GLOBAL striate representation is functionally
involved in a size invariant form encoding. The representation of any stimulus on
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the striate surface varies nonrigidly as a function of its position on the retina,
however, ruling out any direct functional role in form encoding (Cavanagh,
1981, 1982).

Several researchers have documented various LOCALLY organized domains
in the striate cortex: orderly strips of ocular dominance (Hubel, Wiesel, &
LeVay, 1976), color specificity (Michael, 1981) and orientation (Hubel &
Wiesel, 1974). Of most significance is the work of Maffei and Fiorentini (1977),
Tootell et al. (1982), and Berardi et al. (1982) who all claim that size (or spatial
frequency) and orientation form the two orthogonal dimensions of local represen-
tations of the visual stimulus. Although these authors agree on the axes of the
representations they do not agree on the orientation of the local transforms with
respect to the striate surface. Maffei and Fiorentini (1977) and Berardi et al.
(1982), using microelectrode techniques, claim that preferred orientation varies
along a direction parallel to the cortical surface and that size or spatial frequency
varies along a direction perpendicular to the cortical surface. Tootell et al. (1982)
using deoxyglucose labeling techniques claim that both size and orientation axes
are parallel to the surface and perpendicular to each other. (Tolhurst & Thomp-
son, 1982, using microelectrode techniques, were unable to discriminate be-
tween the two alternatives.)

Independently of how the axes may be oriented with respect to the cortical
surface, both research groups are suggesting that the visual information is orga-
nized in small local transforms having orthogonal axes of orientation and size.
Figure 6.5 depicts how this organization might occur for the transforms de-
scribed by Maffei and Fiorentini (1977). According to these authors, the pre-
ferred spatial frequency of cells first increases as layers II and III of the cortex are
traversed and then decreases again crossing layers [V, V, and VI. Only the first
of these representations can be seriously considered as a possible basis for the
local transform. First, the complex cells having local position invariance pre-
dominate in these layers (Hubel & Wiesel, 1962) and second, these layers project
to the prestriate cortex and from there to the inferotemporal cortex, possible sites
of further processing while the other layers, IV, V and VI, project mainly to
subcortical areas (Lund et al., 1975; Spatz et al., 1970).

These local transforms are the essential pieces of the overall transform se-
quence described in the previous section. Their important properties are as
follows.

1. Although the organization within the striate cortex is controversial, the
local transforms appear to have axes of size and orientation. The data of Berardi
et al. (1982) show that while the orientation axis is clearly well ordered, advanc-
ing about 50 degrees for every 250 wm along the direction where spatial frequen-
cy is constant, the spatial frequency axis is not as well ordered. The average
increase in preferred spatial frequency for a fixed change (250 pwm) in position
along a penetration for which preferred orientation is constant is about '2 octave,
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FIG. 6.5. View of a slab of striate cortex showing a cross-section perpendicular
to the cortical surface (the top plane) and parallel to the axis of orientation. The
cross-sections are broken down into local transforms (shown with exaggerated
separations between them here), each sufficiently wide to cover the full range of
orientations (approximately 1 mm, Hubel & Wiesel, 1974), and sufficiently deep
to include a single, ordered range of spatial frequencies. The retinal area encoded
by each local transform changes with cortical position in a retinotopic fashion.

but the actual change is quite variable. It is not possible from their data to
determine whether it is valid to describe the size axis as a logarithmic axis as
required for the form encoding discussed here. Psychophysical data do imply that
the axis is logarithmic (Cavanagh, 1978a). Campbell, Nachmias and Jukes
(1970), for example, report that the just discriminable change of a grating’s
spatial frequency is a fixed percentage (3%) of its current value, classic evidence
of an underlying logarithmic scale.

2. Assuming the size axis is logarithmic, the stimulus encoding (considering
only the complex cells) will respond to any size and orientation changes of the
stimulus within their receptive area by simple shifts in the pattern encoded in the
local transform.

3. Each local transform encodes the visual stimulus from a given spatial area.
Because receptive field size is generally inversely related to preferred spatial
frequency (Movshon, Thompson, & Tolhurst, 1978b), the receptive fields of the
cells responding to large features extend beyond the area covered by the recep-
tive fields of cells preferring high spatial frequencies. The local transforms can
therefore not be considered individually as encodings of a given spatial region,
they are only meaningful when all are considered together. Some integration
process is essential for any useful information to be gained from the local striate
representation.

4. The range of spatial frequencies covered in each local transform decreases
with eccentricity (Berkley, Kitterle, & Watkins, 1975; Movshon et al., 1978c).
This spatial inhomogeneity is similar in effect to vignetting in photography and
limits the high-frequency content in the periphery. This is a characteristic of the
visual system but does not impose any fundamental limitations on the form
encoding process.
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In sum, the local transforms have the necessary axes of size and orientation
although evidence that the size axis is logarithmic is indirect. For the partial
representations in the local transforms to be useful they must be integrated in
some further processing step.

Integration

The striate representations project to the prestriate cortex from layers Il through
III while the lower layers project to the subcortical areas (Lund et al., 1975,
Spatz et al., 1970). The local arrangement of size, orientation and position
information appears to be similar in the prestriate (area 18) and striate cortices—
a retinotopic organization with local transforms having size and orientation axes
(Berardi et al., 1982). Multiple representations appear in area 19 of the prestriate
cortex (Zeki, 1978), but little is known of their local organization.

At the level of the inferotemporal cortex, the receptive fields of the cells are
extremely large, up to 90 by 90 degrees, always include the fovea and typically
extend into both visual hemifields (Gross, 1973). These cells must be receiving
input from several cells in the striate cortex, integrating their responses across the
various visual fields involved. The inferotemporal cortex is certainly a candidate
area for the integration process necessary for the pattern transform sequence
described here.

Several studies have shown that the inferotemporal cortex plays an important
role in form perception. Lesions in this area have been shown to directly affect
pattern vision while not producing any sensory loss (Mishkin, 1972). Gross and
Mishkin (1977) have claimed that the inferotemporal cortex is the basis of the
ability to recognize a stimulus independently of its position. Sato, Kawamura,
and Iwai (1980) have recorded from some cells in the inferotemporal cortex that
respond selectively to given shapes independently of their size, color or bright-
ness. Perrett, Rolls, and Caan (1982) have reported cells in inferotemporal cortex
responding to face stimuli independently of orientation, color or size. Several
authors have suggested that the inferotemporal cortex is the site of a categoriza-
tion process wherein perceptual information becomes symbolically coded for
general purpose manipulation (Dean, 1982: Wilson & DeBauche, 1981). Other
studies have implicated attentional factors in the role of the inferotemporal cortex
(Gross, Bender, & Gerstein, 1979).

Desimone, Schwartz, Albright and Gross (1982) attempted to show that the
cells in the inferotemporal cortex were selective to the texture of an object’s
contour, an aspect related to a boundary-specific, size-invariant scheme used in
pattern recognition (Zahn & Roskies, 1972). Pollen et al. (1983) have found in
the posterior area of IT that cells responded very much like complex cells of area
17 but their receptive fields were much larger. Orientation and spatial frequency
tuning were similar to that of area 17 and no differences in orientation or size
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tuning could be found across the subregions of the receptive fields. They con-
cluded that the cells in this area of the IT cortex may simply be integrating over
several receptive fields of area 17 neurons.

Pollen et al.’s (1983) data imply as well that the summation across individual
receptive fields may not maintain phase coherence across fields. In particular,
the selectivity to spatial frequency and orientation was no narrower in the in-
ferotemporal cortex than in area 17; if the summation had been performed co-
herently, the tuning functions would have been considerably sharpened. To some
extent it appears that the outputs of the individual area 17 cells may simply be
averaged independently of the position of the spatial elements within each sub-
field. This phase-independent integration throws away a good deal of pattern
information and the relevant information must be retained by some other process
for functional pattern encoding to occur. The possible solutions to this problem
are discussed in detail in the following sections.

The cells studied by Pollen et al. (1983) may or may not represent the required
integration of area 17 local information. If the cells studied by Pollen et al. were,
in fact, participating in an integration process, the overall organization of the size
and orientation axes would have to be retained as well, now becoming the global
structure, rather than the local as was the case in area 17. Unfortunately, nothing
is known about the local organization of cells in the inferotemporal cortex, nor of
their global organization, other than the fact that the region is the only visual
structure which is not retinotopically organized (Gross, 1973).

Following an integration step, a position-independent GLOBAL log polar
transform would be available as in Fig. 6.4, third column. (Note that the higher
spatial frequencies could only be integrated over progressively smaller areas
around the fovea as few high-frequency detectors exist in the periphery, Mov-
shon et al., 1978c.) As described previously, size and rotation changes of an
object simply shift its representation in this log polar frequency plane without
affecting its shape.

A final step of a further position-independent transform (where position now
reflects the size and orientation of the input) is then necessary to derive a truly
size invariant, form specific representation. Because the inferotemporal cortex is
the only nonretinotopically organized visual cortex, speculation concerning the
location of these global encodings is limited to this area as well. (Note that rather
than assuming separate and sequential steps of integration and final transforma-
tion, the combination of the two operations into a single step could be considered
as an alternative.)

A variety of transforms could be suggested for this final position invariant
step. For computational convenience in the original demonstration (Fig. 6.4,
fourth column), it was assumed to be a Fourier amplitude transform. Insofar as
the visual system seems to be able to compute some type of frequency analysis
on the retinal array, it is not unreasonable to assume that it might be able to
perform a similar analysis on some higher order representation as well.
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CYCLES PER DOUBLING OF RADIUS

(o] 1
CYCLES PER COMPLETE ROTATION

FIG. 6.6. Preferred stimuli of cells at various locations in a Fourier log polar
Fourier transform representation. Each cell should respond maximally to its pre-
ferred stimulus (or portions thereof) independently of its position in the visual
field. ‘*Cycles per complete rotation’’ reflects the parameter n of Eq. 2 and
**cycles per doubling of radius’” reflects parameter a. For simplicity, the lumi-
nance profiles are shown in black and white and size limited but are actually
sinusoidal and of unlimited extent as given in Eq. 2.

Figure 6.6 depicts the stimuli that would optimally stimulate cells at this final
level—if the first and the final transforms were both Fourier amplitude trans-
forms. Other transforms at the final level would be sufficient to achieve position
invariance and some will undoubtably turn out to be better choices. These stimuli
are therefore not predictions in any strict sense but only demonstrations. Note
that along one axis the encoded dimension is angle and along the other it is
relative size. The maxima along the horizontal axis of Fig. 6.4, fourth column, in
fact represent the 90 degree angles present in the stimuli. The stimuli that
translate into single points on the final level are the family of logarithmic spirals
given by

h(r,8)= sin(n 6 + a log r) 2)
where

r is the radius,

0 the polar angle,

n the number of spiral arms, and

a the rate of expansion.

In sum, integration and final transformation would most likely take place in
the inferotemporal cortex although the evidence concerning this possibility is
incomplete and far from convincing at present. The possibility that integration
may be phase incoherent requires that some attention be paid to possible mecha-
nisms that would counteract the resulting information loss.
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Loss of Position Information Across Locations

In area 17, the complex cells will respond to a stimulus independently of its
position within the receptive field. The precise location of the stimulus is there-
fore not known. Accentuating this problem is the possibility, just discussed, that
the integration of size or spatial frequency information across receptive fields
may be effected without respect to the relative locations in the different fields—
that is,in a phase incoherent manner. For example, two short, parallel line
segments falling on two separate receptive fields would produce the same output
from those fields no matter how the two segments line up. If the output of all
cells tuned to similar orientations and spatial frequencies are simply summed
irrespectively of the relative positions of elements within the various fields (i.e.,
in a phase incoherent manner), then the information of the relative positions of
these two line segments appears to be irretrievably lost.

Although the position information has been lost from these two particular
receptive fields, other receptive fields, particularly of lower preferred spatial
frequency, will cover parts or all of both line segments. The relative positions of
the two line segments will therefore be uniquely encoded by cells that respond to
the overall orientation and spatial frequency of the configuration of the two line
segments.

This mechanism will provide for the encoding of the relative position infor-
mation as long as there are receptive fields large enough to cover the separate
elements being encoded. This implies a lower bound of approximately 6 degrees
separation, in cats, as this is the largest receptive field size reported for the foveal
area of cat striate cortex (Movshon, Thompson, & Tolhurst, 1978c, although in
area 18 the lowest preferred frequency is about .1 cpd, i.e., a receptive field
width of approximately 18 degrees).

Loss of Position Information Between Frequency
Components at the Same Location

Stimuli generally have a range of spatial frequency components at each orienta-
tion and those frequency components that are sufficiently separated (about = 1
octave) will stimulate different complex cells. Because of the loss of position
information within each receptive field, no information would be available con-
cerning the RELATIVE locations of the individual components detected by
different cells—for example, whether first and third harmonics are in peaks-add
or peaks-subtract relative phase. This is a fundamental deficiency of the Fourier
amplitude transform used here to model the first position-independent level of
encoding. For this transform, no information is available concerning the posi-
tions of the individual frequency components, only their degree of presence. If
this were also true for the visual system, we should not be able to distinguish
between images with the same frequency content but altered phase (position)
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content—a single dot and a field of random noise, for example—so this phase or
position information concerning frequency components must be encoded in some
manner.

Relative Phase Encoding

For shape recognition, the relative phase relations between frequency compo-
nents as well as the amplitudes of the components are together sufficient to
describe the shape. The absolute phase value only determines the position of the
shape.

In effect, the Fourier amplitude spectrum used in demonstrations here (Fig.
6.4) throws out all phase information including the intercomponent phase rela-
tions and this is more than is necessary to produce position invariance. A trans-
form based on relative phase information would retain position invariance but
avoid the ambiguities of the Fourier amplitude encoding.

The use of relative phase information to overcome the loss of position infor-
mation previously mentioned is in fact a potential function of the physiology of
the receptive fields. Simple and complex cells respond to a broad band of
frequencies (about = 1 octave, Maffei & Fiorentini, 1973; Movshon et al.,
1978b) and as a result may be sensitive to the relative positions or phases of the
frequencies within that band. The argument is clear for simple cells. They
respond optimally for a stimulus whose intensity distribution matches the cell’s
receptive field profile—brightest in the excitatory regions and darkest in the
inhibitory regions. The simple cell is therefore not only selective for the spatial
frequency content of the stimulus but also for the relative phase offsets of the
frequency components within its passband. Both of these types of information
are necessary to specify the optimal stimulus. Any variation in receptive field
profiles for cells having the same spatial frequency passband indicates that rela-
tive phase can be differentiated by these cells. For example, the symmetric and
antisymmetric receptive fields (Stromeyer & Klein, 1974) for simple cells would
appear to classical electrophysiological techniques as a center strip with two
surrounding inhibitory flanks in the symmetric case and as adjacent excitatory
and inhibitory strips for the antisymmetric case. Both these organizations are
widely reported (Andrews & Pollen, 1979; Movshon et al., 1978a) and a pair of
such cells that has similar frequency characteristics would have different relative
phase preferences: all components in cosine phase for the symmetrical receptive
field, and all components in sine phase for the antisymmetrical field (Fig. 6.7).

Whether or not complex cells are selective for relative phase is not so easily
determined. Complex cells have been suggested here as the basis for invariant
form encoding because of their insensitivity to the stimulus position but this
insensitivity also makes it difficult to directly map effective receptive field sen-
sitivity profiles. Using advanced techniques, Movshon et al. (1978b) and Heg-
gelund (1981) have demonstrated overlapping, antagonistic subfield structures
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FIG. 6.7. Simple cell receptive field sensitivity profiles. (a) Symmetrical recep-
tive field profile. (b) Antisymmetrical receptive field profile. (Figures courtesy of
John Daugman)

for complex cells but it is not currently known whether these cells have relative
phase (e.g., symmetric versus antisymmetric) preferences. If complex cells re-
ceive their input from sets of simple cells as suggested by Hubel and Wiesel
(1962) and Pollen and Ronner (1981), and all the simple cells involved have
the SAME relative phase preferences then each complex cell could retain the
same relative phase specificity as the simple cells feeding into it. Studies of
complex cell response to drifting antisymmetric or symmetric brightness profiles
could clarify the situation.

To retain sufficient pattern information, the visual system must use at least
two different relative phase sensitive detectors. It might possibly use more than
two, which would give the encoding more the flavor of a feature or profile
encoding. That is, there could be several profiles being analyzed at each size and
orientation.

In addition to the possibility of different phase spectra across the relatively
broad spatial frequency bandwidths of cells in the striate cortex, there is also the
possibility of multiple band spatial frequency spectra (i.e., multiple narrow
peaks rather than one broad one). In particular, cells or channels responding to
first and second or first and third harmonics have been described (Cavanagh,
1978b; Cavanagh, Brussell, & Stober, 1981; Glezer, Cooperman, Ivanov, &
Tscherbach, 1976; Pollen, Andrews, & Feldon, 1978). All of these alternatives
simply point to a variety of effective receptive field profiles of NONSINUSOI-
DAL shape. Several psychophysical studies have supported the possibility of
relative phase specificity in the spatial frequency channels (Arend & Lange.
1979; Burr, 1980; Sansbury, Distelhorst, & Moore, 1978).

A pair of broad bandwidth complex cells can encode relative phase only over
a restricted range. However, the overall relative phase information across the
spectrum could be uniquely encoded if each range overlaps with those of cells
tuned to neighboring frequencies and orientations.
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In summary, the fact that the basic encoding elements in the visual system—
the receptive field profiles—are far from the sinusoidal form of the Fourier
transform implies that relative phase information can be directly encoded. That
is, complex cells with a spatial frequency bandwidth of + 1 octave and with at
least two different preferred phase patterns (e.g., symmetric and antisymmetric)
would be able to encode the relative phase information that ensures an unam-
biguous, position independent representation.

The broad bandwidth of the spatial frequency detectors may therefore have a
significant functional role. But what particular advantages of the Fourier trans-
form are lost because of this broad bandwidth? The principal loss is the ortho-
gonality of the encoding set. This implies that the activity of a given detector
does not ensure that a particular pattern is present in the input. The activity of a
given detector implies only that a pattern having components within a certain
frequency and orientation range is present. In the visual system, however, the
orientation and frequency content of the stimulus may be determined from the
distribution of detectors responding. Since a unique encoding is produced for
each given input pattern, no ambiguity arises as a result of the loss of ortho-
gonality. Relative phase encoding therefore appears to be a feasible and func-
tional aspect of visual encoding.

Nonlinearities

A basic property of a linear system is that of superposition: The sum of the
responses to several stimuli is the same as the response to the sum of the stimuli.
In addition to basic cell nonlinearities (threshold and saturation), the position
invariance of the complex cell output produces a significant encoding non-
linearity. The responses of a complex cell to a drifting grating of a given frequen-
cy is an almost unmodulated increase in the firing rate (i.e., a position invariant
“‘amplitude’’ response), if the grating is within the passband of the cell. If two
different frequency components are present within the frequency and orientation
passbands of a cell, the response to the sum of the two components is not
necessarily, nor even likely to be, the sum of the individual responses to each
component in isolation. It is assumed here (Eq. 2) that the resulting response
depends as well on the relative phase of the two gratings, a factor that is not
reflected in the output for each grating separately.

The interaction between these components of different frequency (i.e., the
departure from additivity) is in fact the relative phase information discussed in
the previous section. This information is essential pattern information if the two
frequency components arise from a single stimulus to be identified: a letter, a
face, etc. If the two components come from two separate patterns that are
adjacent or overlapping then their interaction is representative of their relative
positions and will interfere with the identification of either one. That is, the
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response to two patterns will be the response to each individually plus an interac-
tion term that depends on the relative positions of the two patterns.

This interaction term may produce noise problems that would be especially
deleterious if the initial encoding were performed over the entire input field. For
example, as previously discussed, the presence of a second pattern would se-
riously interfere with the identification of the first if identification were based on
the Fourier amplitude transform, a transform that encodes the entire input field.
This interference would occur independently of where the two patterns were
situated, either overlapping or widely sparated. One way to reduce this interac-
tion is in fact to analyze only local areas for amplitude terms and then sum across
local areas. If the two patterns are not within the same receptive field then their
amplitude terms can be summed linearly. This is a distinct advantage of the local
nature of the initial encoding in the striate cortex, if it is assumed, as has been
discussed, that the outputs of the complex cells in area 17 are simply summated
across the visual field to produce a global transform. The lack of superposition
will therefore apply only within the initial receptive field, producing interference
effects with similar characteristics (overlap or adjacency) to those seen in mask-
ing and hidden figures studies of human vision.

On the other hand, the interaction terms among patterns (the deviations from
additivity) can become important if the arrangement of the patterns is meaning-
ful, e.g., the arrangement of the letters in a word. Each of the different possible
arrangements of the letters of a word will produce different interaction terms thus
distinguishing between POST and SPOT, for example.

Although the nonlinearity can be useful for encoding meaningful combina-
tions of patterns it represents only noise, as mentioned previously, when one
pattern is to be identified in a field of distractors. It is important to determine to
what extent this noise would impair or prohibit the identification of a stimulus.
The simulation of relative phase encoding in the next section permits a rough
evaluation of the interference produced.

4. A RELATIVE PHASE SENSITIVE LOG POLAR
FREQUENCY ENCODING

This section demonstrates some of the pattern recognition properties of the log
polar frequency transform when relative phase information is included. Several
simplifications are made for computational convenience and no claim is made
that this represents a physiological process. Several properties of transforms that
may be used in the visual system may be extrapolated from this simulation
nonetheless.

The advantage of the relative phase information inherent in the broad band-
width complex cell output is the discrimination of patterns sharing the same
frequency components but differing in relative phase relations. To simplify the
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calculations, only a single relative phase sensitive profile—antisymmetrical—is
used. Without the complementary symmetric information, phase ambiguities still
exist: a pattern and its black/white reversal cannot be distinguished, for example.
However, antisymmetrical detectors that respond to the same frequency compo-
nents but at orientations 180 degrees apart can differentiate left-facing. versus
right-facing combinations of the same frequency components and thus a pattern
versus its 180 degree rotation, a distinction that is impossible in the Fourier
amplitude representation.

As an additional simplification, the possibility of interactions between fre-
quencies within the passband is represented by using only two spatial frequencies
rather than a broad band of frequencies. A comparison of the frequency and
spatial characteristics of actual and simulated cells is shown in Fig. 6.8. The
sensitivity profile is basically that of an antisymmetrical detector encoding the
first and second harmonics. The encoded dimensions are thus frequency (peri-
odicity of the sensitivity profile) and orientation (from O to 360 degrees).

The output of each detector is given by the integral of the product of the input
brightness profile by the detector sensitivity profile (Eq. 3) at the position for
which this integral is maximum. This is taken to be a realistic representation of
the position invariant aspect of the output of a complex cell (Heggelund, 1981,
Pollen & Ronner, 1982). For a detector of frequency, f, at orientation, 8, where

ty = f cos6
fy = fsind
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FIG. 6.8. (a) The antisymmetrical receptive field profile for simple cells as-
sumed to be feeding into the complex cells. (b) The spatial frequency response
curve for this cell. (¢) The sensitivity profile for the simulated antisymmetrical
detector. (d) The spatial frequency response curve of the simulated detector.
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and an input intensity profile S(x,y), the integral G(f, 6, y) represents the
response of a particular subfield at position, or phase angle vy.

G(f,0,y) = f ) j TSy fsin2m(E, x + £y + v

+ .5 sin [4m(f,x + fy) + 2y + /2] }dxdy 3)

The overall response, H(f,0), is taken as that of the subfield giving the maximum
output, that is the maximum value of the integral over the range 0 to 2 w for vy

21

H(f,0) = MAX {G(f,ﬂ,'y) i } if H(f,0) > H(f,0 + )

Y=
Y=

=0 otherwise (4)

An additional nonlinearity (Eq. 4) is added to accentuate the relative phase
information. Klein and Stromeyer (1980) and Cavanagh, Brussell and Stober
(1981) have reported suggestive evidence that detectors of different phase sen-
sitivities but similar frequency and orientation preferences are mutually inhibito-
ry in order to enhance dominant local features. In this simulation then, a given
detector’s output will be its maximum integrated product with the input if this
value is greater than the corresponding value for its relative phase pair (the
detector at the same frequency but with a 180 degree difference in orientation),
and zero otherwise. Discrimination of the orientation of the test letters was in fact
poor without this mutual inhibition.

The transform is identical in all other respects to that described for Fig. 6.4.

Classification of the tests is again based on the correlations of their final
amplitude transforms with the final transforms of the prototypes: an F, an E, and
a P. The discrimination of the orientation of the tests is based on the crosscorrela-
tion of the intermediate transforms (Fig. 6.9, second column) with the intermedi-
ate transforms of the prototypes. Since at the intermediate level, the orientation
of the test is reflected by the shifting left or right of the encoded pattern, the
position of maximum correlation should reflect the test orientation directly. If the
intermediate encoding had been based on a simple amplitude transform, as was
the case in Fig. 6.4, then there would be no difference between encoded patterns
for 180 degree rotations of the stimulus—note the repetition of the encoded
pattern from O to 180 degrees in the 180 to 360 degree range for all log polar
frequency transforms of Fig. 6.4.

It can be seen in Fig. 6.9 that this 180 degree ambiguity is gone, the dif-
ferences greatly accentuated by the suppression of the weaker of each pair of
components differing by 180 degrees.

Each orientation of the input thus produces a unique encoding at this level and
the orientation can be derived by sliding the prototype pattern over the test until
the maximum correlation is obtained. Note that because the orientation axis is
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TABLE 6.2.

Correlations between the final relative phase sensitive
representations of E, P and F at 15 minutes of visual angle and 0
degrees orientation and the final transfoms of the variously
oriented F's and the double F presentation.

F m E| TF
1.00 87 91 71
.79 73 .73 63
oy 75 73 63

discontinuous in a log polar representation, the maximum obtainable correlation
will decrease as more of the pattern drops off one border and returns on the other.

This crosscorrelation measure is used as a demonstration only. The operation
was performed directly on the final transform level by taking the product of the
input final transform and the prototype final transform (both real and imaginary
values, not simply the amplitude component) and inverse Fourier transforming
it. This will produce a peak at the coordinates of the maximum correlation and
the orientation and size (x and y coordinates of the intermediate transform) can
be read directly from this. This is not to imply that the brain might proceed in the
same way. If the brain were to encode size and orientation as phase information
at the final transform level the optimum method for decoding size and orientation
would depend on how this information was to be used.

Table 6.2 shows that all inputs were correctly classified, the discrimination
between F and E being even greater than in the amplitude transform examples of
Fig. 6.4. This improvement brings the quality of this recognition operation—
simple correlation between the final transforms—<close to the optimum obtaina-
ble by correlating the original letters, normalized for size, orientation and posi-
tion in the space domain. Significantly, the inclusion of a second F in the input
did decrease the correlation with the prototype as a result of nonlinearities (am-
plitude and inhibition) in the input encoding (Eq. 2). Classification remained
clearcut nevertheless. A more extensive evaluation might point out more serious
instances of interitem interference but recall that the examples here are under the
worst case conditions of a single input field rather than a mosaic of individual
receptive fields. Interference from nonlinearities in the encoding discussed pre-
viously would be greatly reduced by local nonlinear encoding followed by linear
summation across local regions.

In addition, the input orientation was successfully decoded in every case, the
crosscorrelation maxima occurred approximately at 0, 90, and 180 degrees. No
ambiguity was found for 180 rotations of the stimuli.

In sum, the inclusion of relative phase information, as demonstrated in a
limited way here, not only renders the modeling physiologically more realistic
but also improves the pattern recognition capabilities of the encoding.
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FIG. 6.9. A relative phase sensitive size and position invariant encoding se-
quence. The letter F is presented at three different orientations (0, 90, and 180
degrees) as well as presented twice within the same field at 0 and 90 degrees and
15 and 7.5 minutes of visual angle respectively. Opposite, an E and a P are also
presented for comparison. Each input is shown at two stages of transformation: a
broadband log polar frequency representation that is sensitive to relative phase and
the Fourier amplitude transform of this representation. The images are presented
on matrices of 64 X 64 resolution with amplitude being represented in 30 equal
intervals between the minimum and maximum of each image by the density of
dots. The final Fourier amplitude transform is performed on the log polar represen-
tation after it is reduced to 32 X 32 resolution and zero mean amplitude with the
rest of the 64 X 64 array set to zero. This minimizes aliasing and aperture effects

(Goodman, 1968).
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5. TEMPLATES

The end result of the encoding sequence proposed here is a form-specific repre-
sentation that is independent of size and position (and, to some extent, orienta-
tion). This permits the classification of stimuli using previously stored
templates—final transforms of prototype patterns: letters, familiar faces, com-
mon forms and symbols, and familiar words might be a few examples. The input
transform would have to be matched in parallel against all relevant prototypes for
this approach to achieve significant efficiency. Such parallel matching processes
have been described in the literature (Anderson, Silverstein, Ritz, & Jones,
1977; Cavanagh, 1975, 1976; Eich, 1982; Kohonen, 1977; Murdoch, 1982).

Earlier work with the confusability of letters (Cavanagh, 1983) has shown that
interletter similarity is well predicted by such correlational matches. Several
other studies have claimed to predict significant proportions of the letter confu-
sion variance using feature (Keren & Baggen, 1981), cluster (Shepard & Arabie,
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1979), or choice models (Keren & Baggen, 1981) but these models use several
free parameters (from 29 to 350). Thirty arbitrary parameters are probably suffi-
cient to predict 95% of the variance of the order of the interletter confusions.
With no free parameters at all, a correlational model can predict 78% of the
available variance. In addition, the analysis showed that no structural features
(e.g., closure, symmetry, curvature) could explain any significant proportion of
the variance in the confusion data beyond that already attributable to the correla-
tion match predictions.

The data analyzed (Cavanagh, 1983) showed convincingly that the observed
interletter confusions are best explained by a position independent encoding (for
example, I and J are as confusable as I and T even though the center stroke 1s
overlapping only for I and T, indicating a position independent process) but the
available data could not test the size or rotation properties of the transform
sequence proposed here as the size and orientation of the letters were never
varied.

These findings indicate that for situations where the form of the tests is known
(the letter confusion studies used a fixed font) an analogue match operation is a
reasonable model for identification and recognition. For situations where the test
is in an unpredictable form—handwriting, for example—it is likely that a struc-
tural or topological representation would be more appropriate.

For analyzing real world scenes involving shadows, partially hidden objects
and objects recognized by function as opposed to shape (e.g., chairs), a more
sophisticated analysis than that available from simple template matches—even if
size and position invariant—is certainly essential. It is unlikely that the visual
system would switch back and forth from one mode to the other depending on the
situation but it is not unreasonable to assume that a more sophisticated structural
analysis could take as its base data, pattern elements identified by a transforma-
tional encoding. Rather than having to encode patterns and scenes as structures
of simple lines and angles, the structural encoding could start after the analogue
encoding had matched all identifiable elements in the scene—geometrical
shapes, letters, familiar objects—all elements for which stored representations
were available. When the scene is totally unfamiliar with no previously stored
shapes of any sort present, the primitives are simply reduced to the lines and
angles extracted by the receptive field profiles of the initial encoding level.

The analogue and structural approaches to pattern recognition may therefore
be simply two levels of a more complex process. Stored prototypes could provide
arich, high-level set of size and position invariant primitives to serve as the basis
set for an intelligent structural analysis. Tasks that require identification or
classification of familiar patterns should reveal principally the properties of the
analogue, transformational encoding. Tasks requiring an identification of un-
familiar representations of known objects or understanding of novel scenes
should reveal the properties of the structural levels of analysis. Examples of high
level structural encodings have been given by Marr (1982), for example, in the
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cylinder representations of animal shapes. He assumed that the basic body parts
are identified by contour extraction rather than by template extraction, a far
simpler procedure.

It remains to be seen whether a viable model integrating a high level set of
template extracted patterns with a structural analysis can be constructed. It would
appear, however, that there is good evidence for both levels of processing.

6. CONCLUSIONS

An encoding transform has been described that obtains a size invariant represen-
tation of form. The first of two essential steps in the sequence is a position
invariant encoding of the input that arrays the pattern information along axes of
orientation and log size. A log polar Fourier amplitude transform was used to
demonstrate this level. A representation of the stimulus in this transform will
shift along the orientation axis for rotations of the stimulus and will shift along
the log size axis for size changes. The encoded pattern itself is unchanged except
for these shifts. Because of the position invariance, the encoding is affected
neither by the location of the stimulus nor by the centre of its rotation or size
change.

The second step is a position independent encoding of the first representation.
The shifts caused by size and orientation changes are now ignored and the
representation is a true, size invariant, form specific encoding. A Fourier ampli-
tude transform was used to demonstrate this stage.

The possibility of a size and position invariant representation makes the use of
correlational memories a realistic proposition. There are, however, a number of
drawbacks in the simplified sequence presented here for demonstrating the prin-
ciples of the encoding. First, the Fourier amplitude transform is not well suited
for pattern encoding because of its phase ambiguity. Second, cortical cells only
respond to small, local areas of the visual field rather than the entire visual field
as does the Fourier amplitude transform. Third, the amplitude transform has
significant encoding nonlinearities due specifically to its position invariance
property.

In considering the physiology of the striate cortex to determine a more realis-
tic representation, it is noted that the complex cells do provide a local, position
independent encoding response to size and orientation and that, according to
Maffei and Fiorentini (1977), Berardi et al. (1982) and Tootell et al. (1982), cells
in the visual cortex are organized locally with orthogonal axes of size and
orientation. It is also noted that the cells respond to a broad range of spatial
frequencies and thus are sensitive to the relative phase content of the stimuli.
This information is sufficient to remove the ambiguities that accompany the
Fourier amplitude encoding if there are at least two different relative phase
sensitivity profiles for the complex cells. The complex cells are, as well, located
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principally in the striate layers that project to the prestriate and then to the
inferotemporal cortices. Because of its nonretinotopic organization, the in-
ferotemporal cortex is suggested as the site for integrating across receptive fields
and for the final, position invariant transform to obtain the size invariance. Thus
the various shortcomings of the Fourier encoding are overcome: the relative
phase sensitivity of the striate cells removes any phase ambiguity; the summation
across receptive fields implies that although the encoding at each receptive field
is still nonlinear due to position invariance (the response for two components is
not the sum of the individual responses but also reflects intercomponent spac-
ing), it is only locally nonlinear. The response to components falling on separate
receptive fields is linear assuming linear summation. The properties of the corti-
cal encoding therefore appear to provide the potential for an encoding of signifi-
cantly greater utility than that described in the original demonstration.

It remains to be seen whether there is, in fact, a range of phase sensitivities for
complex cells as required by this model. If all complex cells show similar phase
spectra then the encoding is again troubled by phase ambiguities and the sug-
gestion of Robson (1980) that the spatial frequency encoding serves a texture
segmentation process becomes the more plausible model.

If the brain is actually using an encoding sequence similar to that described
here, it must be remembered that the results of such an encoding would probably
be integrated as the base data into a structural analysis of the stimulus. Only in a
task requiring direct recognition of familiar objects—letters in a known font
familiar faces, etc.—will the results of the size and position invariant encoding
be the final level of analysis.

In conclusion, a physiologically plausible transform sequence capable of pro-
ducing a size and position invariant encoding has been described. Whether or not
the visual system makes use of this process appears to be testable in a number of
ways but a final decision is not possible until the structure and function of the
inferotemporal cortex is better understood. This encoding process would proba-
bly operate as one of several parallel analyses of the visual input. Information
from color, depth and motion channels, as well as the brightness-based form
encoding described here, would all flow into higher order structural analyses in
order to build an overall representation of the visual input.
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